

- 1 Spatio-temporal patterns of the effects of precipitation variability
- 2 and land use/cover changes on long-term changes in sediment yield
- 3 in the Loess Plateau, China
- 4
- 5 Guangyao Gao^{1,2}, Bojie Fu^{1,2}, and Murugesu Sivapalan^{3,4}
- 6
- ⁷ ¹State Key Laboratory of Urban and Regional Ecology, Research Center for
- 8 Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- 9 ²Joint Center for Global Change Studies, Beijing 100875, China
- ³Department of Geography and Geographic Information Science, University of Illinois at
- 11 Urbana-Champaign, Champaign, Illinois, USA
- ⁴Department of Civil and Environmental Engineering, University of Illinois at
- 13 Urbana-Champaign, Urbana, Illinois, USA
- 14
- 15 Correspondence to: Guangyao Gao (gygao@rcees.ac.cn)
- 16

17 Abstract

- 18 Within China's Loess Plateau there have been concerted revegetation efforts and
- 19 engineering measures over the last 50 years aimed at reducing soil erosion and land
- 20 degradation. As a result, annual streamflow, sediment yield and sediment concentration
- 21 have all decreased considerably. Human induced land use/cover change (LUCC) was the
- 22 dominant factor, contributing over 70% of the sediment load reduction, with reductions of
- annual precipitation contributing the remaining 30%. In this study, we use data on 50-year
- time series (1961-2011), showing decreasing trends in the annual sediment loads of fifteen

43

25	catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation
26	variability on sediment yield. The space-time variability of sediment yield was expressed as
27	a product of two factors representing: (i) effect of precipitation (spatially variable) and (ii)
28	fraction of treated land surface area (temporally variable). Under minimal LUCC, annual
29	sediment yield varied linearly with precipitation, with the precipitation-sediment load
30	relationship showing coherent spatial patterns amongst the catchments. On the other hand,
31	the effect of LUCC is expressed in terms of a sediment coefficient, i.e., ratio of annual
32	sediment yield to annual precipitation, which is equivalent to the slope of the sediment
33	yield-precipitation relationship. Sediment coefficients showed a steady decrease over the
34	study period, following a linear decreasing function of the fraction of treated land surface
35	area. In this way, the study has brought out the separate roles of precipitation variability
36	and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
37	
38	Keywords: Loess Plateau, sediment yield, land use/land cover change, climate change,
39	precipitation variability
40	
41	1 Introduction
42	Streamflow and sediment transport are important controls on biogeochemical processes

44 landscapes and the resulting changes in sediment transport rates in rivers have great

45 environmental and societal consequences, particularly since they can be brought about by

that govern ecosystem health in river basins (Syvitski, 2003). Changes in soil erosion on

46 climatic changes and human induced land use/cover changes (LUCC) (Syvitski, 2003;

- 47 Beechie et al., 2010). Understanding the dominant mechanisms behind such changes at
- 48 different time and space scales is crucial to the development of strategies for sustainable
- 49 land and water management in river basins (Wang et al., 2016).
- 50 In recent decades, streamflows and sediment yields in large rivers throughout the world
- have undergone substantial changes (Milly et al., 2005; Nilsson et al., 2005; Milliman et al.,
- 52 2008; Cohen et al., 2014). Notable decreases in sediment yields have been observed in

approximately 50% of the world's rivers (Walling and Fang, 2003; Syvitski et al., 2005).

- 54 Many studies have investigated the dynamics of streamflows and sediment yields at
- different spatial and temporal scales (Mutema et al., 2015; Song et al., 2016; Gao et al.,
- 56 2016; Tian et al., 2016). In addition to climate variability, LUCC, soil and water
- 57 conservation measures (SWCM) and construction of reservoirs and dams have substantially
- contributed to the sediment load reductions (Walling, 2006; Milliman et al., 2008; Wang et
- al., 2011). While previous studies have certainly provided valuable insights into the
- 60 streamflow and sediment load changes, the distinctive roles of LUCC and precipitation
- 61 variability in changing sediment loads still need further investigation in large domains and
- 62 across gradients of climate and land surface conditions (Walling, 2006; Mutema et al.,
- 63 2015). A particularly useful approach to the development of generalizable understanding of
- 64 the effects of precipitation variability and LUCC is a comparative analysis approach
- 65 focused on extracting spatio-temporal patterns of sediment yields based on observations in
- 66 multiple locations within the same region, or even across different regions. This is
- especially valuable and crucial in areas with severe soil erosion and fragile ecosystems, e.g.,
- the Loess Plateau (LP) in China. This is the motivation for the work presented in this paper.

69	The LP lies in the middle reaches of the Yellow River (YR) Basin, and contributes
70	nearly 90% of the YR sediment (Wang et al., 2016). The historically severe soil erosion in
71	the LP is due to sparse vegetation, intensive rainstorms, erodible loessial soil, steep
72	topography and a long agricultural history (Rustomji et al., 2008). To control such severe
73	soil erosion, several SWCM including terrace and check-dam construction, afforestation
74	and pasture reestablishment have been implemented since the 1950s (Yao et al., 2011; Zhao
75	et al., 2016). A large ecological restoration campaign, the Grain-for-Green (GFG) project
76	by converting farmland on slopes exceed 15° to forest and pasture lands, was implemented
77	in 1999 (Chen et al., 2015). Furthermore, the climate in the LP region has been showing
78	both warming and drying trends (i.e., increased potential evapotranspiration and reduced
79	precipitation) since the 1950s (Zhang et al., 2016).
80	These substantial LUCC have notably altered the hydrological regimes in the LP
81	combined with the climate change. Consequently, the sediment yields within the LP have
82	showed a predictable decline trend over the past 60 years (Zhao et al., 2016), resulting in
83	approximately a 90% decrease of sediment yield in the YR (Miao et al., 2010, 2011; Wang
84	et al., 2016). Many other studies have detected the influences of LUCC and precipitation
85	variability on sediment load changes within the LP. Rustomji et al. (2008) estimated that
86	the contributions of catchment management practices to the decrease of annual sediment
87	yield ranged between 64% and 89% for eleven catchments in the LP during 1950s-2000.
88	Zhao et al. (2016) examined the spatio-temporal variation of sediment yield from 1957 to
89	2012 across the LP. Zhang et al. (2016) pointed out that the combined effects of climate
90	aridity, engineering projects and vegetation cover change have induced significant

91	reductions of sediment yield between 1950 and 2008. Wang et al. (2016) found that
92	engineering measures for soil and water conservation were the main factors for the
93	sediment load decrease between 1970s-1990s, but large-scale vegetation restoration
94	campaigns also played important role in reducing soil erosion since the 1990s.
95	In terms of the results of these previous studies, it is now generally accepted that the
96	largest reductions of sediment yield within the LP were resulted from LUCC. However, this
97	is general knowledge covering the whole region, and given the significant variability of
98	climate and catchment characteristics across the LP (Sun Q et al., 2015; Sun W et al., 2015),
99	it is important to go further and explore how these might affect spatio-temporal patterns of
100	sediment yield. Exploration of these patterns is important for sustainable ecosystem
101	restoration and water resources planning and management within the LP. They also will
102	serve as the basis for future research aimed at the development of more generalizable
103	understanding of landscape and climate controls on sediment yields at the catchment scale.
104	The specific objectives of this study therefore are to: (1) attribute the temporal changes
105	in sediment yield to changes in both precipitation variability and LUCC over the entire
106	study period (1961-2011) within the middle part of the LP, (2) extract spatio-temporal
107	trends in sediment yields on the basis of annual sediment yield data from 15 catchments
108	within the region, (3) separate the contributions of precipitation variability and fractional
109	area of LUCC to the observed spatio-temporal patterns of sediment yields, and pave the
110	way for more detailed process-based studies in the future.
111	2 Materials and methods

112 **2.1 Study area**

113	This study is conducted in the central region of the LP, from the Toudaoguai to Longmen
114	hydrological stations in the mainstream of the YR (Fig. 1). This area is usually referred to
115	as the Coarse Sandy Hilly Catchments (CSHC) region. The main stream that flows through
116	the CSHC region is 733 km long and covers an area of 12.97×10^4 km ² . The CSHC region
117	accounts for 14.8% of the entire YR Basin, but supplies over 70% of total sediment load in
118	the YR, especially coarse sand (Rustomji et al., 2008). The CSHC region is characterized
119	by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during
120	1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than
121	300 mm in the northwest (McVicar et al., 2007). The precipitation that occurs during the
122	flood season (June-September) is usually in the form of rainstorms with high intensity and
123	accounts for 72% of the annual rainfall total. Correspondingly, about 45% of the annual
124	runoff and 88% of the annual sediment yield within the CSHC region are produced during
125	the flood season. The northwestern part of the CSHC is relatively flat while the
126	southeastern part is more finely dissected (Rustomji et al., 2008).
127	Fourteen main catchments along the north-south transect within the CSHC study area
128	were chosen for study (Fig. 1). These catchments account for 57.4% of the CSHC area, and
129	contribute about 70% and 72% of streamflow and sediment load of the overall CSHC,
130	respectively. Characteristics of these catchments are shown in Table 1. It can be seen that
131	the catchments present strong climate and land surface gradients. The catchments in the
132	northwestern part (#1-6) have relatively lower mean annual precipitation (380 mm $< \overline{P} < 445$
133	mm, where \overline{P} is mean annual precipitation over 1961-2011) and low vegetation cover
134	(0.32 <lai<0.37, area="" corresponding="" for<="" index),="" is="" lai="" leaf="" td="" the="" values="" where="" while=""></lai<0.37,>

- catchments in the southeastern part (#7-14) are 470-570 mm and 0.63<LAI<2.16,
- 136 respectively. The entire CSHC region is considered as an additional "catchment" and it is
- 137 also examined. The streamflow and sediment load for the whole CSHC region was equal to
- the differences of value between the Toudaoguai and Longmen gauging station. Fig. 2
- 139 shows the changes of annual precipitation, streamflow and sediment load for the whole
- 140 CSHC region during 1961-2011.

141 2.2 Data

- 142 Monthly streamflow and sediment load data during 1961-2011 were provided by the
- 143 Yellow River Conservancy Commission of China. Daily rainfall data from 1961 to 2011 at
- 144 66 meteorological stations in and around the CSHC region were obtained from the National

145 Meteorological Information Center of China. The spatially average of rainfall data were

146 determined by the co-kriging interpolation algorithm with input of the DEM. With the

- 147 hydro-meteorological data, annual precipitation, P [mm], streamflow, Q [mm], specific
- sediment yield defined as SSY=S/A [t km⁻²], where S is sediment load, t, A is the drainage
- area of the hydrological station, km^2 , sediment concentration defined as SC=S/(Q.A) [kg
- 150 m⁻³] and the sediment coefficient defined as $C_s = SSY/P$ [t km⁻² mm⁻¹] for each catchment
- 151 were estimated.

The land use information as at 1986, 1997 and 2010 was determined with Landsat TM remote sensing images at a spatial resolution of 30 m. Six land use types were classified, i.e., forestland, cropland, grassland, construction land, water body, and wasteland. The annual LAI data during 1982-2011 were obtained from the Global Inventory Modelling and Mapping Studies-Advanced Very High Resolution Radiometer (GIMMS AVHRR) data set

- 157 (http://www.glcf.umd.edu/data/lai/) which has a spatial resolution of 8 km (resampled to 1
- 158 km) and temporal frequencies of 15 day. Vegetation cover in the summer or autumn of
- 159 1978, 1998 and 2010 was determined with Landsat MSS, Landsat TM and HJ CCD which
- 160 has a spatial resolution of 56 m, 30 m and 30 m, respectively. The total areas impacted by
- 161 the various SWCM (i.e., afforestation, grass plantation, terraces and check-dams)
- 162 during1960s-2000s were obtained from Yao et al. (2011).
- 163 **2.3 Methods**
- 164 **2.3.1 Trend test**
- 165 The non-parametric Mann-Kendall (M-K) test method proposed by Mann (1945) and
- 166 Kendall (1975) was used to determine the significance of the trends in annual
- 167 meteorological and hydrological time series. A precondition for using the MK test is to
- 168 remove the serial correlation of climatic and hydrological series. In this study, the
- trend-tree pre-whitening (TFPW) method of Yue and Wang (2002) was used to remove the
- 170 auto-correlations before the trend test. A Z statistic was obtained from the M-K test on the
- 171 whitened series. A negative value of Z indicates a decrease trend, and vice versa. The
- 172 magnitude slope of the trend (β) was estimated by (Sen, 1968; Hirsch et al., 1982):

173
$$\beta = \operatorname{Median}\left[\frac{x_j - x_i}{j - i}\right] \quad \text{for all } i < j \tag{1}$$

174 where x_i and x_j are the sequential data values in periods *i* and *j*, respectively.

175 2.3.2 Attribution analysis of changes in sediment load

- 176 The time-trend analysis method was used to determine the quantitative contributions of
- 177 LUCC and precipitation variability to sediment load changes. This method is primarily
- 178 designed to determine the differences in hydrological time series between different periods

179	(reference and validation periods) with different LUCC conditions (Zhang et al., 2011).	In
180	this method, the regression equation between precipitation and sediment load is develop	ed
181	and evaluated during the reference period, and the established equation is then used to	
182	estimate sediment load during the validation period. The difference between measured a	ind
183	predicted sediment loads during the validation period represents the effects of LUCC, a	nd
184	the residual changes are caused by precipitation variability. The governing equations of	the
185	time-trend analysis method can be expressed as:	
186	$S_1 = f(P_1)$	(2)
187	$S_2' = f(P_2)$	(3)
188	$\Delta S^{\text{LUCC}} = \overline{S_2} - \overline{S_2'}$	(4)
189	$\Delta S^{\rm Pre} = \left(\overline{S_2} - \overline{S_1}\right) - \Delta S^{\rm LUCC}$	(5)
190	where S' is the predicted sediment load, subscripts 1 and 2 indicate the reference and	
191	validation periods, respectively. $\overline{S_1}$ and $\overline{S_2}$ represent mean measured sediment load due	ring
192	the reference and validation periods, respectively, and $\overline{S'_2}$ represents mean predicted	
193	sediment load during the validation period. ΔS^{LUCC} and ΔS^{Pre} are sediment load changes	
194	during the validation period associated with LUCC and precipitation variability,	
195	respectively.	
196	In this study, the full data period of 1961-2011 was divided into three phases	
197	(1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference	
198	period as the effects of human activities were slight and could be mostly ignored (Wang	et

- al., 2016). A linear function was used to develop precipitation-sediment load relationship
- 200 during the reference period. During the second stage, numerous SWCM were implemented.

- 201 For the third stage, a large ecological restoration campaign (GFG project) was launched in
- 202 1999.
- 203 3 Results and discussion
- 204 **3.1 Changes of land use/cover**
- 205 The CSHC region has undergone extensive LUCC caused by the implementation of
- 206 SWCM and vegetation restoration projects (e.g., the GFG project). Fig. 3a shows the
- distribution of land use types of the CSHC region in 1986, 1997 and 2010. More than 90%
- 208 of the whole area is occupied by the cropland, forestland and grassland. The area of
- cropland decreased by 19.47% and forestland increased by 59.65%, and there was no
- 210 obvious change for the area of grassland from 1986-2010. The majority of changes
- 211 occurred during 1997-2010 due to the GFG (reforestation) project (18.58% decrease and
- 40.71% increase for cropland and forestland, respectively). From 1986 to 2010, the water
- 213 body area increased by 88.05% due to construction of reservoirs, and construction land
- 214 increased by about twenty times because of the urbanization and extensive infrastructure
- 215 construction.

The SWCM implemented in the LP included both biotic treatment (e.g., afforestation and grass-planting) and engineering measures (e.g., construction of terrace and check-dam and gully control projects). Afforestation, grass-planting and construction of terrace are the slope measures, while building of check-dams and gully control projects are the measures on the channel. Although the utilized area of engineering measures was much smaller than the biotic treatments, they can immediately and substantially trap streamflow and sediment load. The fraction of the treated area (area treated by erosion control measures relative to

- total catchment area) within the CSHC increased from 3.95% in the 1960s to 28.61% in the
- 224 2000s (Fig. 3b). The increase of the treated area was greatest during the 1980s as a result of
- 225 comprehensive management of small watersheds and during the 2000s due to the GFG
- 226 project since 1999. Some decreases in these areas occurred during the 1990s as some of the
- 227 erosion control measures undertaken were then subsequently destroyed.
- For the fourteen sub-catchments, vegetation cover increased from $29.19 \pm 21.09\%$ in
- 1978 to $31.69 \pm 17.18\%$ in 1998, and then increased sharply to $44.10 \pm 14.62\%$ in 2010. In
- the whole CSHC region, the amounts of vegetation cover in 1978, 1998 and 2010 were
- 231 23.61%, 25.68% and 38.71%, respectively. The increase of vegetation cover for the
- catchments in the northwestern part (48.95% from 1978 to 1998 and 65.98% from 1998 to
- 233 2010) was greater than that in the southeastern part (-1.48% from 1978 to 1998 and 28.72%
- from 1998 to 2010). The annual LAI of the fourteen sub-catchments increased by 15.50%
- from 1982-1999 to 2000-2011, and the relative change in the catchments of northwestern
- part is 27.08%, which is greater than that in the southeastern part (6.82%). For the whole
- 237 CSHC region, the annual LAI changed from 0.51 during 1982-1999 to 0.55 during
- 238 2000-2011, an increase of 7.31%.

239 3.2 Trends of hydro-meteorological and sediment yield variables

- Table 2 shows the trends in annual P, Q, SSY, SC and C_s of the fifteen catchments during
- 1961-2011. The annual *P* showed a decline trend in all catchments but only significant in the
- 242 Xinshui and Zhouchuan catchments (p<0.05). The annual Q, SSY, SC and C_s showed
- significant decreasing trends in all the catchments, and most of the decreases were at the
- 244 0.001 significance level. For the fourteen sub-catchments, the average decrease rates of

- 245 annual values of Q, SSY, SC and C_s were 0.86 mm yr⁻¹ (0.24-1.66 mm yr⁻¹), 190.06 t km⁻²
- 246 yr^{-1} (26.47-398.82 t km⁻² yr⁻¹), 2.73 kg m⁻³ yr⁻¹ (0.69-4.70 kg m⁻³ yr⁻¹) and 0.38 t km⁻² mm⁻¹
- yr^{-1} (0.04-0.87 t km⁻² mm⁻¹ yr⁻¹), respectively. For the whole CSHC region, the
- corresponding change rates of Q, SSY, SC and C_s were -0.85 mm yr⁻¹, -131.52 t km⁻² yr⁻¹,
- $-2.06 \text{ kg m}^{-3} \text{ yr}^{-1}$ and $-0.27 \text{ t km}^{-2} \text{ mm}^{-1} \text{ yr}^{-1}$, respectively. The annual average reductions in
- the whole CSHC region are equivalent to 2.56%, 3.30%, 2.01% and 3.07% of the mean
- annual values of Q, SSY, SC and C_s , respectively.

252	The mean and the coefficient of variation, C_v , representing inter-annual variability of
253	annual values of P , Q , SSY, SC and C_s of the fifteen catchments during the three phases
254	(reference period-1, period-2 and period-3) are shown in Fig. 4. Compared to the reference
255	period, the mean annual precipitation decreased by 11.73% (6.36-15.69%) and 10.64%
256	(5.88-16.7%) on average in period-2 and period-3, respectively. From period-2 to period-3,
257	the change of mean annual precipitation was slight (increased by 1.32% on average) with
258	decrease of 2.45%-5.87% in four catchments and increase in remaining catchments
259	(0.35%-8.29%). The variability of annual P also decreased as indicated by the reductions of
260	C_v values during period-2 and period-3 (Fig. 4a). In contrast to annual P , the reductions of
261	mean annual Q , SSY, SC and C_s were clearly more evident. With respect to the reference
262	period, the reduction was 34.41% (9.45%-54.72%), 48.02% (17.98%-67.61%), 24.20%
263	(-9.93%-47.77%) and 39.31% (4.64%-63.5%) for <i>Q</i> , <i>SSY</i> , <i>SC</i> and <i>C</i> _s during period-2, and the
264	decreasing rate was even more in period-3 with values of 64.82% (36.72%-84.19%), 88.23%
265	(64.94% -97.64%), 67.81% (17.28%-91.12%) and 85.85% (63.51%-96.97%), respectively. C
266	of annual Q increased in eight catchments, with the remaining ones showing decreasing

267 trends (Fig. 4b), C_{ν} values for SSY, SC and C_s increased in all catchments (Figs 4c-4e).

268 **3.3 Quantitative attribution of sediment load decline**

269	The effects of precipitation change and LUCC on sediment yield reductions in period-2 and
270	period-3 were quantified using Eqs. (2-5) and the results are shown in Fig. 5. The analysis
271	showed that both decreased precipitation and increased area treated with erosion control
272	measures contributed to the observed sediment load reduction, and that LUCC played the
273	major role. On average, the LUCC and precipitation change contributed 71.01% and
274	28.99%, respectively, to sediment load reduction from the reference period to period-2, and
275	their contributions were, respectively, 84.77% and 15.23% to sediment load reduction from
276	the reference period to period-3, respectively. The effect of LUCC in period-3 was greater
277	than that in period-2 as the land use and vegetation coverage had undergone substantial
278	changes due to the ecological restoration campaigns launched during period-3 (see Fig. 3).
279	From period-2 to period-3, the contribution of precipitation was negative for sediment yield

- 280 reduction in eleven catchments where the annual precipitation slightly increased during
- these two periods, and thus the contribution of LUCC was larger than 100% (Fig. 5c). In
- the remaining four catchments, the average contribution of LUCC increased to 86.15%.

283 In broad terms there are two factors that govern annual sediment yield of a catchment:

- 284 precipitation and landscape properties (soil, topography and vegetation). Higher
- 285 precipitation means higher streamflow, which is the immediate driver of erosion and
- sediment transport. Landscape properties not only have an impact on the volume or
- 287 intensity of streamflow, but also determine the erodibility of the soil. On the basis of the
- field evidence, we can hypothesize that the annual sediment yield SSY can be expressed as

289	a product of a spatially variable component, which is only a function of a spatially variable
290	annual precipitation, P , and a temporally variable component, which is only a function of a
291	temporally variable fraction of area treated with erosion control measures, A_c .
292	$SSY(\boldsymbol{x},t) = SSY_0.f_1[P(\boldsymbol{x})].f_2[A_c(t)] $ (6)
293	where SSY_0 is the sediment yield in the reference period, <i>t</i> represents time and <i>x</i> is a vector
294	that represents spatial location of the catchments, and f_1 and f_2 are appropriate (yet to be
295	determined) functional forms that reflect the net effects of sub-catchment scale and
296	sub-annual runoff on sediment generation processes. In this framework, the variation of
297	SSY during the reference period mainly depends on precipitation, and any spatial patterns
298	of SSY among catchments may be controlled by differences in annual precipitation and land
299	surface conditions before LUCC took effect. As LUCC increased and took effect, the
300	temporal changes of SSY may depend more on the fraction of treated surface area and
301	precipitation possibly might play a secondary role. Guided by this hypothesis, we next
302	organize the data analysis to generate separate spatial and temporal patterns that constitute
303	the respective components of the spatio-temporal patterns.
304	3.4 Spatial pattern of the impacts of precipitation on sediment yield during Period 1
305	The regression relationships between annual precipitation and sediment yield during the
306	reference period are shown in Fig. 6. Most of the catchments showed strong linear
307	correlation between precipitation and sediment yield. The coefficient of determination (R^2)
308	ranged from 0.24 to 0.85, and the correlation was significant in eight catchments (p <0.05)
309	(Table 3). Furthermore, the precipitation-sediment load relationship varied from catchment
310	to catchment and showed a spatial pattern. The correlation coefficient between precipitation

311	and sediment yield was greater for catchments in the northwestern part with average R^2
312	value of 0.69 and p value of 0.017 compared to those in the southeastern part where the
313	average R^2 and p values were 0.36 and 0.118, respectively (Table 3). Based on the slopes of
314	the regression equations between annual precipitation and sediment yield, the fifteen
315	catchments were classified into four groups, which indicate that the sediment production
316	capability of annual precipitation is different among the catchments (Fig. 6). The three
317	catchments of the first group in Fig. 6a had the greatest slopes (85-95) and the Shiwang
318	catchment in Fig. 6d had the lowest slope of 7.26. The average slope of the five catchments
319	in Group-2 was 57.57 (50-70), and the slope value of the six catchments in Group-3 was
320	30.88 (20-40). Overall, the regressed linear equations were significant for most of the
321	catchments, and were suitable for estimating the relative contributions of LUCC and
322	precipitation variability to sediment load changes.
323	Differences in catchment characteristics, including land use/cover, soil properties and
324	topography, as well as precipitation characteristics, are clearly the reason for the spatial
325	patterns in the precipitation-sediment yield relationship (Morera et al., 2013; Mutema et al.,
326	2015). To fully explore this, the mapping of information of catchment characteristics into
327	sediment yield models and simulating under climate scenarios is needed (Ma et al., 2014;
328	Achete et al., 2015). In this context, the inter-annual and intra-annual patterns of variability
329	of precipitation, including the distribution of storm events, may also contribute to the
330	observed spatial patterns of precipitation-sediment yield relationship.
331	3.5 Spatial pattern of precipitation impacts on sediment yield during Periods 2 and 3

332 Precipitation is the primary driver of runoff and, therefore, directly influences the sediment

333	transport capacity of streamflow and sediment yield at the catchment scale. Compared to
334	the reference period, the correlation between precipitation and sediment yield during the
335	period-2 decreased in the catchments, as indicated by the reductions of R^2 value in Table 3
336	and the increased scatter of the linear relationship in Fig. 7. The slope of the regression line
337	in the period-2 decreased in most of the catchments with respect to the reference period,
338	but in some catchments (e.g., Huangfu, Gushan and Kuye) the reduction in the slope was
339	slight. Furthermore, the precipitation-sediment yield relationship during these two periods
340	showed a similar spatial pattern. In period-2, the fifteen studied catchments could also be
341	classified into four groups using the decrease of slope of the regression line from Group-1
342	to Group-4 (Fig. 7). From the reference period to period-2, only Jialu catchment moved
343	from Group-1 to Group-2 and Yanhe catchment moved from Group-2 to Group-3 (Figs. 6
344	and 7).
345	In period-3, the correlation between precipitation and sediment yield was much weaker
346	compared to that during the reference period and period-2 (Table 3 and Fig. 8). The
347	relationship between precipitation and sediment yield was non-significant in all the
348	catchments (Table 3), and the scatter of the data points in Fig. 8 was notable. The slope of
349	the regression line during period-3 decreased sharply (Table 3), and for some catchments
350	the slope was even negative (Fig. 8d). This result indicates that the sediment production
351	capability of annual precipitation reduced greatly during period-3, and the increase of
352	precipitation amount in some catchments did not lead to an increase of sediment yield.
353	Furthermore, the spatial pattern of precipitation-sediment relationship during period-3 was
354	much different from that during the reference period and during period-2 through

- 355 comparisons of Fig. 8 with Figs. 6-7. As shown in Fig. 8, most of the catchments were
- 356 distributed in Group-1 and Group-4, which displayed considerable variability in the
- 357 precipitation-sediment relationship among the catchments.
- 358 The aforementioned analysis of precipitation-sediment yield relationship in different
- 359 periods clearly indicates that the impacts of precipitation on sediment load declined with
- time, and the impacts were different among catchments, with a clear spatial pattern. The
- 361 decreased effects of precipitation on sediment load were consistent with the significant
- 362 reductions of sediment coefficient (Table 2) and the decreased contribution of precipitation
- to sediment load reduction (28.99% and 15.23% in period-2 and period-3, respectively).
- 364 During period-2, the LUCC were mainly induced by SWCM, especially engineering
- 365 measures. During period-3, the combined effects of substantial vegetation cover and
- 366 conservation measures undoubtedly further weakened the effects of precipitation on
- 367 sediment load reduction.
- As LUCC took effect during period-2 and period-3, and despite the much reduced role 368 of precipitation in driving changes in sediment yield, within-year temporal rainfall patterns 369 370 did play an important role in the observed changes of sediment yield, given that most of the 371 sediment yield was produced during a few key storm events. Taking the Yanhe catchment as an example, the precipitation amount during the rainy season (May-October when 372 sediment load was measured) in 2003 and 2004 was 514.31 mm and 389.05 mm, 373 respectively, whereas the sediment load in 2004 (2427.37 \times 10⁴ t) was about over four times 374 of that in 2004 (590.04 \times 10⁴ t). As shown in Fig. 9, there were six days with precipitation 375
- amount over 20 mm and the maximum daily precipitation amount on 25th Aug was 27.85

- mm in 2003, and the values in 2004 were five days and 46.34 mm on 10th Aug.
- 378 Furthermore, heavy rainfall events were distributed in every month in 2003, whereas they
- 379 were concentrated in July and August in 2004. There were five evident peaks of sediment
- load with the sum of 1646.24×10^4 t (67.82% of annual total) in 2004, especially the one on
- 10th Aug produced 784.53×10^4 t sediment load (32.32% of annual total) (Fig. 9b). In
- 382 contrast, there were three peaks of sediment load in 2003, and the maximum value was
- only 139.97×10^4 t (Fig. 9a). Therefore, apart from annual precipitation amounts,
- 384 within-year rainfall patterns should also be considered to investigate the effects of
- 385 precipitation on temporal-spatial changes of streamflow and sediment load.

386 **3.6 Spatial pattern of the impacts of land use/cover on sediment load change**

- 387 The sediment load reductions in the LP were primarily caused by the LUCC and the
- implementation of SWCM. The cropland area decreased 6233.13 km² (5.54% of region area)
- and the forestland area increased 7246.45 km^2 (6.44% of region area) from 1986 to 2010.
- 390 Most of the increase in forestland area was converted from cropland area induced by the GFG
- 391 or reforestation project. As a result of the land use change, vegetation cover increased greatly
- 392 and it substantially contributed to the decreases of runoff and sediment production. The
- 393 SWCM, such as afforestation and engineering measures were the major interventions in the
- 394 study area to retain precipitation and consequently reduce streamflow and sediment load.
- 395 Establishing perennial vegetation cover was considered as one of the most effective measures
- to stabilize soils and minimize erosion (Farley et al., 2005; Liu et al., 2014). It was reported
- 397 that both runoff coefficient and sediment concentration of catchments in the LP decreased
- 398 significantly and linearly with the vegetation cover (Wang et al., 2016). The engineering

399	structures mainly included creation of terrace and building of check-dams and reservoirs,
400	which reduced flood peaks and stored water and sediment within the catchment. There were
401	about 110, 000 check-dams in the LP which trapped about 21 billion m ³ of sediment during
402	the past six decades (Zhao et al., 2016). Over time, the effectiveness of engineering measures
403	decreased as they progressively fill with sediments, and vegetation restoration must in future
404	play a greater role in control of soil erosion for the LP.
405	To quantify the effects of SWCM on sediment load reduction, the relationship between
406	the sediment coefficient and the fraction of area treated with erosion control measures in the
407	15 catchments was analysed and the results are presented in Fig. 10. The sediment coefficient
408	decreased linearly with the fraction of treated land surface area in all catchments. The
409	correlation was significant in eleven catchments ($p < 0.05$) with R^2 ranging from 0.78 to 0.99
410	(Table 4). Note that the temporal variations presented in Figure 10 are not based on annual
411	data (such data does not exist), but longer-term (decadal) averages.
412	The effects of SWCM on sediment load change show a spatial pattern. The correlation
413	between sediment coefficient and conservation measures was stronger in catchments located
414	in the north-western part compared to that in the south-eastern part (Table 4). Based on the
415	slope of the regression equation between the sediment coefficient and fraction of the treated
416	area, the 15 catchments were classified into three groups (Fig. 10), which indicated that the
417	degree of sediment load impacted by conservation measures was different among the
418	catchments. The four catchments of the first group in Fig. 10a had the greatest slopes over
419	0.85, followed by the four catchments in Group-2 ($0.50 \sim 0.65$) and seven catchments in
420	Group-3 (less than 0.30). Finally, inspired by the hypothesis presented in Eq. 6 and on the

421	basis of the observed linear relationships, it is now plausible to construct an empirical
422	relationship between a decadal average of sediment yield and the combination of decadal
423	average precipitation, \overline{P} , and the area under land use/cover change, A_c , of the following
424	form:

425
$$SSY = k_0 \cdot \overline{P} \cdot (1 - k_1 A_c)$$
(7)

426 4 Conclusions

427	The LP has undergone major changes in land use/land cover over the last 50 years as part
428	of a concerted effort to cut back on soil erosion and land degradation and sediment yield of
429	rivers. These included terrace and check-dam construction, afforestation, and pasture
430	reestablishment. Over the same period the region has also experienced some reduction in
431	rainfall, although this is relatively insignificant. Through analyses of hydrological and
432	sediment transport data, this study has brought out the long-term decreasing trends in
433	sediment loads across fifteen large sub-catchments located in the region. The study was
434	particularly aimed at extracting spatio-temporal patterns of sediment yield and attributing
435	these patterns to the broad hydro-climatic and landscape controls.
436	Over the study period (1961-2011), the total area undergoing erosion control treatment
437	went up from only 4% to over 30%. This included to decrease of cropland by 20%, increase
438	of forestland of 60% over the 40 years (grasslands remained unchanged), and an increase in
439	water body area by 90% (through the building of reservoirs). Over the same period annual
440	precipitation decreased by not more than 10%. As a result of the erosion control measures,
441	over the entire 50-year period, there have been major reductions in streamflow (65%),
442	sediment yield (88%), sediment concentration (68%) and sediment efficiency, i.e., annual

443	sediment yield/annual precipitation (86%).
444	The observed data in the 15 study catchments also exhibits interesting spatio-temporal
445	patterns in sediment yield. The study attempted to separate the relative contributions of
446	annual precipitation and LUCC to these spatio-temporal patterns. Before LUCC took effect
447	the data indicates a linear relationship between annual sediment yield and annual
448	precipitation in all 15 catchments, with highly variable slopes of the relationship between
449	the catchments, which exhibited systematic spatial patterns, in spite of considerable scatter.
450	As LUCC increased and took effect, the scatter increased and the slopes of the sediment
451	yield vs precipitation relationship became highly variable and lost any predictive power.
452	The study then looked at the controls on sediment coefficient instead of sediment yield
453	(thus eliminating the effect of precipitation and enabling a direct focus on landscape
454	controls). The results of this analysis found that sediment coefficient was heavily
455	dependent on the area under land use/cover treatment, exhibiting a linear (decreasing)
456	relationship. Even here, there was a considerable variation in the slope of the relationship
457	between the 15 catchments, which exhibited a systematic spatial pattern.
458	Preliminary analyses presented in this study suggests that much of the sediment yield in
459	the LP may be caused during only a few major storms. Therefore, the seasonality and
460	intra-annual variability of precipitation may play important roles in annual sediment yield,
461	which may also explain the spatial patterns of sediment yield and the effects of the various
462	LUCC. Also, the precipitation threshold for producing sediment yield would have increased
463	greatly as a result of SWCM and vegetation restoration in the LP. Exploration of these
464	questions in detail will require a more physically based model that can account for fine

- 465 scale rainfall variability. This is the next immediate step in our investigations, and will be
- 466 reported on in the near future.
- 467

468 Acknowledgements

- 469 This research was funded by the National Natural Science Foundation of China (41390464
- and 41471094), the Chinese Academy of Sciences (GJHZ 1502) and the Youth Innovation
- 471 Promotion Association CAS (2016040). We thank the Ecological Environment Database of
- 472 Loess Plateau, the Yellow River Conservancy Commission, and the National Meteorological
- 473 Information Center for providing the hydrological and meteorological data. We thank Jianjun
- 474 Zhang for help in doing some figures and Zheng Ning for collecting the hydrological data.

475

476 **References**

- 477 Achete, F.M., van der Wegen, M., Roelvink, D., and Jaffe, B.: A 2-D process-based model
- 478 for suspended sediment dynamics: a first step towards ecological modeling, Hydrol.

479 Earth Syst. Sci., 19, 2837-2857, 2015.

- 480 Beechie, T. J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P., and
- 481 Pollock, M.M.: Process-based principles for restoring river ecosystems, Bioscience, 60,
 482 209-222, 2010.
- Chen, Y.P., Wang, K.B., Lin, Y.S., Shi, W.Y., Song, Y., and He, X.H.: Balancing green and
 grain trade, Nat. Geosci., 8, 739-741, 2015.
- 485 Cohen, S., Kettner, A.J., and Syvitski, J.P.M.: Global suspended sediment and water
- 486 discharge dynamics between 1960 and 2010: continental trends and intra-basin

- 487 sensitivity, Glob. Planet. Chang., 115, 44-58, 2014.
- 488 Farley, K.A., Jobbágy, E.G., and Jackson, R.B.: Effects of afforestation on water yield: a
- 489 global synthesis with implications for policy, Glob. Chang. Biol., 11, 1565-1576, 2005.
- 490 Hirsch, R.M., Slack, J.R., and Smith, R.A.: Techniques of trend analysis for monthly water
- 491 quality data, Water Resour. Res., 18, 107-121, 1982.
- 492 Kendall, M.G.: Rank Correlation Measures, Charles Griffin, London, UK, 1975.
- 493 Liu, X.Y., Yang, S.T., Dang, S.Z., Luo, Y., Li, X.Y., and Zhou X.: Response of sediment
- 494 yield to vegetation restoration at a large spatial scale in the Loess Plateau, Sci. China
- 495 Tech. Sci., 57, 1482-1489, 2014
- 496 Mann, H.B.: Nonparametric tests against trend, Econometrica, 13(3), 245-259, 1945.
- 497 Ma, X., Lu, X.X., van Noordwijk, M., Li, J.T., and Xu, J.C.: Attribution of climate change,
- 498 vegetation restoration, and engineering measures to the reduction of suspended sediment
- in the Kejie catchment, southwest China, Hydrol. Earth Syst. Sci., 18, 1979-1994, 2014.
- 500 McVicar, T.R., Li, L.T., Van Niel, T.G., Zhang, L., Li, R., Yang, Q.K., Zhang, X.P., Mu, X.M.,
- 501 Wen, Z.M., Liu, W.Z., Zhao, Y.A., Liu, Z.H, and Gao, P.: Developing a decision support
- 502 tool for China's re-vegetation program: simulating regional impacts of afforestation on
- ⁵⁰³ average annual streamflow in the Loess Plateau, For. Ecol. Manag., 251, 65-81, 2007.
- 504 Miao, C.Y., Ni, J.R., and Borthwick, A.G.L.: Recent changes of water discharge and
- sediment load in the Yellow River basin, China, Prog. Phys. Geogr., 34, 541-561, 2010.
- 506 Miao, C.Y., Ni, J.R., Borthwick, A.G.L, and Yang, L.: A preliminary estimate of human and
- 507 natural contributions to the changes in water discharge and sediment load in the Yellow
- 508 River, Glob. Planet. Chang., 76, 196-205, 2011.

- 509 Milliman, J.D., Farnsworth, K.L., Jones, P.D., Xu, K.H., and Smith, L.C.: Climatic and
- 510 anthropogenic factors affecting river discharge to the global ocean, 1951-2000, Glob.
- 511 Planet. Chang., 62, 187-194, 2008.
- 512 Milly, P.C.D., Dunne, K.A., and Vecchia, A.V.: Global pattern of trends in streamflow and
- 513 water availability in a changing climate, Nature, 438, 347-350, 2005.
- 514 Morera, S.B., Condom, T., Vauchel, P., Guyot, J.-L., Galvez, C., and Crave, A.: Pertinent

515 spatio-temporal scale of observation to understand suspended sediment yield control

- 516 factors in the Andean region: the case of the Santa River (Peru), Hydrol. Earth Syst. Sci.,
- 517 17, 4641-4657, 2013.
- 518 Mutema, M., Chaplot, V., Jewitt, G., Chivenge, P., and Blöschl, G.: Annual water, sediment,
- 519 nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a function

520 of scale, Water Resour. Res., 51, doi:10.1002/2014WR016668, 2015.

- 521 Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C.: Fragmentation and flow regulation
- of the world's large river systems, Science, 308, 405-408, 2005.
- 523 Rustomji, P., Zhang, X.P., Hairsine, P.B., Zhang, L., and Zhao J.: River sediment load and
- 524 concentration responses to changes in hydrology and catchment management in the
- Loess Plateau of China, Water Resour. Res., 44, W00A04, doi:10.1029/2007WR006656,
 2008.
- 527 Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat.
- 528 Assoc., 63, 1379-1389.
- 529 Song, C.L., Wang, G.X., Sun, X.Y., Chang, R.Y., and Mao, T.X.: Control factors and scale
- 530 analysis of annual river water, sediments and carbon transport in China, Sci. Rep.,

- 531 6:25963, doi:10.1038/srep25963, 2016.
- 532 Sun, Q.H., Miao, C.Y., Duan, Q.Y., and Wang, Y.F.: Temperature and precipitation changes
- over the Loess Plateau between 1961 and 2011, based on high-density gauge
- observations, Glob. Planet. Chang., 132, 1-10, 2015.
- 535 Sun, W.Y., Song, X.Y., Mu, X.M., Gao, P., Wang, F., and Zhao, G.J.: Spatiotemporal
- 536 vegetation cover variations associated with climate change and ecological restoration in
- 537 the Loess Plateau, Agric. For. Meteorol., 209, 87-99, 2015.
- 538 Syvitski, J.P.M.: Supply and flux of sediment along hydrological pathways: Research for the
- 539 21st century, Glob. Planet. Chang., 39, 1-11, 2003.
- 540 Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., and Green, P.: Impact of humans on the flux
- of terrestrial sediment to the global coastal ocean, Science, 308, 376-380, 2005.
- 542 Walling, D.E. and Fang, D.: Recent trends in the suspended sediment loads of the world
- 543 rivers, Glob. Planet. Chang., 39, 111-126, 2003.
- 544 Walling, D.E.: Human impact on land-ocean sediment transfer by the world's rivers,
- 545 Geomorphology, 79, 192-216, 2006.
- 546 Wang, H.J., Saito, Y., Zhang, Y., Bi, N.S., Sun, X.X., and Yang, Z.S.: Recent changes of
- sediment flux to the western Pacific Ocean from major rivers in east and south-east Asia,
- 548 Earth Sci. Rev., 108, 80-100, 2011.
- 549 Wang, S., Fu, B., Piao, S., Lü, Y., Philippe, C., Feng, X., and Wang, Y.: Reduced sediment
- transport in the Yellow River due to anthropogenic changes, Nat. Geosci., 9, 38-41,
- 551 2016.
- 552 Yao, W.Y., Xu, J.H., and Ran, D.C.: Assessment of Changing Trends in Streamflow and

- 553 Sediment Fluxes in the Yellow River Basin, Yellow River Water Conservancy Press,
- 554 Zhengzhou, China, 2011 (in Chinese).
- 555 Yue, S. and Wang, C.Y.: Applicability of pre-whitening to eliminate the influence of serial
- correlation on the Mann-Kendall test, Water Resour. Res., 38, 1068,
- 557 doi:10.1029/2001WR000861, 2002.
- 558 Zhang, B.Q., He, C.S., Burnham, M., and Zhang, L.H.: Evaluating the coupling effects of
- climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China,
- 560 Sci. Total Environ., 539, 436-449, 2016.
- 561 Zhang, L., Zhao, F.F., Chen, Y., and Dixon, R.N.M.: Estimating effects of plantation
- 562 expansion and climate variability on streamflow for catchments in Australia, Water

563 Resour. Res., 47, W12539, doi:10.1029/2011WR010711, 2011.

- 564 Zhao, G.J., Mu, X.M., Jiao, J.Y., An, Z.F., Klik, A., Wang, F., Jiao, F., Yue, X.L., Gao, P., and
- 565 Sun, W.Y.: Evidence and causes of spatiotemporal changes in runoff and sediment yield
- on the Chinese Loess Plateau, Land Degrad. Dev., doi:10.1002/ldr.2534, 2016.

567

568 **Figure captions**

- 569 Figure 1. Location of the studied catchments in the Coarse Sandy Hilly Catchments
- 570 (CSHC) region within the Loess Plateau.
- 571 Figure 2. Annual precipitation, streamflow and sediment load for the whole CSHC region
- 572 during 1961-2011.
- 573 Figure 3. The changes of (a) land use, (b) soil and water conservation measures area, (c)
- 574 vegetation cover and (d) LAI in the study area.
- 575 Figure 4. The changes of (a) precipitation, (b) streamflow, (c) sediment yield, (d) sediment
- 576 concentration and (e) sediment coefficient during different stages (1961-1969,
- 577 1970-1999 and 2000-2011).
- 578 Figure 5. Contributions of precipitation and land use/cover to reductions of sediment load
- 579 from (a) reference period (P1) to period-2 (P2), (b) reference period (P1) to period-3 (P3)
- 580 and (c) period-2 (P2) to period-3 (P3).
- 581 Figure 6. The relationship between annual precipitation and sediment yield during the
- 582 reference period (1961-1969).
- **Figure 7.** The relationship between annual precipitation and sediment yield during the
- 584 period-2 (1970-1999).
- Figure 8. The relationship between annual sediment yield and precipitation during the
 period-3 (2000-2011).
- 587 **Figure 9.** Daily precipitation and sediment load of the Yanhe catchment during rainy
- 588 season (May-October) in (a) 2003 and (b) 2004.
- 589 Figure 10. Relationships between the sediment coefficient and percentage of the area
- 590 affected by soil and water conservation measures in the catchments. The data points
- represent the average values of 1960s, 1970s, 1980s, 1990s, and 2000s.

28

Ê	-		Area			Annual	average		
a	Catchment	Gauging station	(km ²)	P (mm)	$\begin{array}{c} Q \\ (mm) \end{array}$	SSY (t km ⁻²)	SC (kg m ⁻³)	C_s (t km ⁻² mm ⁻¹)	LAI
1	Huangfu	Huangfu	3175	388.95	36.34	11608.86	275.90	27.35	0.351
7	Gushan	Gaoshiya	1263	422.49	49.55	12398.68	189.57	25.98	0.364
З	Kuye	Wenjiachuan	8515	394.63	59.25	09.6606	114.99	21.17	0.324
4	Tuwei	Gaojiachuan	3253	402.82	97.53	4454.47	38.44	10.16	0.363
5	Jialu	Shenjiawan	1121	445.51	49.22	9645.19	142.19	20.03	0.365
9	Wuding	Baijiachuan	29662	384.32	36.39	3089.61	74.09	7.67	0.371
٢	Qingjian	Yanchuan	3468	485.58	38.93	8747.17	190.57	17.35	0.905
8	Yanhe	Ganguyi	5891	516.09	34.08	6604.90	166.31	12.45	1.623
6	Shiwang	Dacun	2141	572.16	32.99	798.89	20.32	1.31	2.158
10	Qiushui	Linjiaping	1873	469.02	34.83	7818.21	185.79	15.75	0.632
11	Sanchuan	Houdacheng	4102	486.23	50.37	3444.56	53.39	6.63	1.242
12	Quchan	Peigou	1023	539.73	30.24	7492.57	192.01	13.68	0.622
13	Xinshui	Daning	3992	529.96	29.22	3004.96	86.81	5.23	1.141
14	Zhouchuan	Jixian	436	530.06	30.13	4951.15	107.99	8.55	0.774
15	CSHC	Toudaoguai and Longmen	129654	437.27	33.30	3988.04	102.42	8.73	0.523

Table 1. Long-term hydrometeorological characteristics (1961-2011) and leaf area index (LAI) (1982-2011) of the studied catchments in the

Loess Plateau.

Hydrology and Earth System Sciences Discussions

Table 2. Maconcentratio	nn-Kendal n (SC), sec	ll trend analys liment coeffic	is results foi ient (C_s) du	r the annual p	recipitation 11.	(P), streamflov	v (Q), specif	ic sediment yiel	ld (SSY), sedi	iment
-		Ρ		\widetilde{O}		SSY		SC		C_s
Catchment	Ζ	β (mm yr ⁻¹)	Ζ	β (mm yr ⁻¹)	Ζ	β (t km ⁻² yr ⁻¹)	Ζ	β (kg m ⁻³ yr ⁻¹)	Ζ	β (t km ⁻² mm ⁻¹ yr ⁻¹)
Huangfu	-0.57^{ns}	-0.52	-4.82***	66.0-	-4.50***	-323.24	-1.97*	-2.58	-4.71***	-0.80
Gushan	-0.78 ^{ns}	-1.16	-5.02***	-1.47	-4.90***	-398.82	-3.75***	-3.92	-5.15***	-0.87
Kuye	-0.49 ^{ns}	-0.37	-5.98***	-1.66	-5.41***	-288.83	-4.61***	-3.22	-5.60***	-0.63
Tuwei	-0.24 ^{ns}	-0.27	-7.88***	-1.57	-5.20***	-130.34	-4.37***	-0.98	-5.59***	-0.30
Jialu	0.19^{ns}	0.26	-7.55***	-1.42	-5.36***	-298.10	-3.80***	-3.89	-5.60***	-0.69
Wuding	-0.39 ^{ns}	-0.37	-6.60***	-0.54	-4.55***	-79.19	-3.33***	-1.35	-4.94***	-0.20
Qingjian	-0.73 ^{ns}	-0.56	-2.06*	-0.24	-3.01**	-138.54	-3.09**	-3.53	-2.73**	-0.30
Yanhe	-1.19 ^{ns}	-1.17	-3.22**	-0.34	-3.36***	-115.18	-3.30***	-3.07	-3.10**	-0.22
Shiwang	-1.20 ^{ns}	-1.50	-4.01***	-0.61	-6.26***	-26.47	-5.43***	69.0-	-6.12***	-0.04
Qiushui	-0.28 ^{ns}	-0.35	-5.80***	-0.97	-6.98***	-290.44	-5.00***	-4.00	-5.98***	-0.55
Sanchuan	-1.43 ^{ns}	-1.71	-6.09***	-0.96	-5.35***	-108.69	-5.13***	-1.60	-5.99***	-0.21
Quchan	-0.94 ^{ns}	-1.14	-3.23**	-0.42	-3.65***	-173.16	-3.72***	-4.12	-3.46***	-0.29
Xinshui	-2.37*	-2.71	-5.57***	-0.70	-5.92***	-106.30	-3.77***	-1.92	-5.60***	-0.19
Zhouchuan	-2.21*	-2.48	-7.20***	-0.79	-5.86***	-183.49	-6.73***	-4.70	-7.12***	-0.35
CSHC	-0.67 ^{ns}	-0.55	-5.91***	-0.85	-5.70***	-131.52	-4.26***	-2.06	-5.67***	-0.27
^a ***, ** and [:]	* indicate th	e significance le	evels of 0.001	l, 0.01 and 0.05	, respectively	. ns indicates the	significance le	vels exceeds 0.05		

2000	-2011).									
Ê	,	Reference period (1961-196	(6	Period-2 (1970	(6661-(Period-3 (2000	-2011)	
E	Catchinent	Regression equation	R^{2}	d	Regression equation	R^{2}	d	Regression equation	R^{2}	d
1	Huangfu	y = 85.10x - 9752.3	0.72	0.004	y = 88.67x - 12773	0.37	0.000	y = 10.61x - 1386.4	0.11	0.296
7	Gushan	y = 93.16x - 11606	0.85	0.000	y = 84.91x - 12876	0.31	0.001	y = 6.79x - 441.92	0.11	0.291
б	Kuye	y = 66.42x - 5353.1	0.55	0.022	y = 57.86x - 7048.9	0.28	0.002	y = 1.95x - 33.53	0.06	0.435
4	Tuwei	y = 34.35x - 2830.4	0.84	0.001	y = 23.90x - 2913.2	0.16	0.031	y = -2.05x + 1076.9	0.05	0.469
5	Jialu	y = 90.23x - 7626.1	0.75	0.005	y = 47.31x - 6155.7	0.08	0.128	y = 9.98x - 1713.1	0.07	0.405
9	Wuding	y = 21.76x - 649.01	0.40	0.068	y = 16.96x - 1918.7	0.24	0.006	y = 8.25x - 1291.3	0.25	0.101
٢	Qingjian	y = 49.75x - 5568.4	0.27	0.154	y = 37.74x - 3904.1	0.20	0.014	y = 8.15x - 580.79	0.05	0.513
8	Yanhe	y = 56.63x - 11559	0.34	0.100	y = 20.76x - 697.94	0.13	0.053	y = 4.12x + 900.6	0.05	0.831
6	Shiwang	y = 7.26x - 1255.3	0.33	0.104	y = 5.02x - 1193	0.22	0.008	y = -0.16x + 128.3	0.02	0.667
10	Qiushui	y = 63.64x - 5673.8	0.47	0.043	y = 42.20x - 6950	0.22	0.008	y = -8.14x + 4488.1	0.03	0.564
11	Sanchuan	y = 28.53x - 2109.1	0.24	0.180	y = 18.75x - 3458.8	0.36	0.000	y = -3.99x + 1901	0.11	0.282
12	Quchan	y = 39.87x - 1265.6	0.25	0.258	y = 20.51x + 60.83	0.04	0.279	y = -26.78x + 13294	0.11	0.300
13	Xinshui	y = 27.62x - 4923.5	0.62	0.012	y = 19.27x - 4077.4	0.48	0.000	y = 0.90x + 372.85	0.01	0.777
14	Zhouchuan	y = 51.41x - 8690.4	0.36	0.090	y = 42.27x - 10495	0.28	0.003	y = -1.05x + 666.84	0.07	0.408
15	CSHC	y = 33.13x - 4167.96	09.0	0.015	y = 20.34x - 2728.2	0.27	0.003	y = 2.03x + 174.09	0.01	0.715

30

Table 3. The linear regression equations between annual precipitation and sediment load during three stages (1961-1969, 1970-1999 and

ID	Catchment	Regression equation	R^2	р
1	Huangfu	y = -0.67x + 45.88	0.85	0.025
2	Gushan	y = -0.90x + 46.66	0.82	0.034
3	Kuye	y = -0.83x + 38.32	0.89	0.017
4	Tuwei	y = -0.48x + 19.94	0.98	0.002
5	Jialu	y = -1.20x + 53.20	0.97	0.002
6	Wuding	y = -0.31x + 16.92	0.97	0.003
7	Qingjian	y = -0.31x + 24.70	0.48	0.193
8	Yanhe	y = -0.26x + 18.54	0.79	0.045
9	Shiwang	y = -0.15x + 3.01	0.87	0.020
10	Qiushui	y = -0.87x + 35.69	0.80	0.040
11	Sanchuan	y = -0.28x + 13.32	0.78	0.046
12	Quchan	y = -0.29x + 21.02	0.52	0.169
13	Xinshui	y = -0.20x + 8.63	0.72	0.069
14	Zhouchuan	y = -0.61x + 17.89	0.61	0.118
15	CSHC	y = -0.54x + 17.74	0.99	0.000

Table 4. Regression equations between the sediment coefficient and percentage of the area

 affected by soil and water conservation measures in the catchments.

Figure 1. Location of the studied catchments in the Coarse Sandy Hilly Catchments (CSHC) region within the Loess Plateau.

Figure 2. Annual precipitation, streamflow and sediment load for the whole CSHC region during 1961-2011.

Figure 3. The changes of (a) land use, (b) soil and water conservation measures area, (c) vegetation cover and (d) LAI in the study area.

Figure 4. The changes of (a) precipitation, (b) streamflow, (c) sediment yield, (d) sediment concentration and (e) sediment coefficient during different stages (1961-1969, 1970-1999 and 2000-2011).

Figure 5. Contributions of precipitation and land use/cover to reductions of sediment load from (a) reference period (P1) to period-2 (P2), (b) reference period (P1) to period-3 (P3) and (c) period-2 (P2) to period-3 (P3).

Figure 6. The relationship between annual precipitation and sediment yield during the reference period (1961-1969).

Figure 7. The relationship between annual precipitation and sediment yield during the

period-2 (1970-1999).

Figure 8. The relationship between annual sediment yield and precipitation during the

period-3 (2000-2011).

Figure 9. Daily precipitation and sediment load of the Yanhe catchment during rainy season (May-October) in (a) 2003 and (b) 2004.

Figure 10. Relationships between the sediment coefficient and percentage of the area affected by soil and water conservation measures in the catchments. The data points represent the average values of 1960s, 1970s, 1980s, 1990s, and 2000s.